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The Effects of Potassium on Carbon Monoxide Methanation over Supported
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Abstract

The reaction of hydrogen with carbon monoxide over Rh/A1203 and

Rh/TiO2 catalytic films, some of which contained potassium as an additive,

has been investigated. The presence of potassium caused the usual gem

dicarbonyl and linear CO species on supported rhodium to dissociate at

lower temperature than for catalysts containing no potassium. On the other

hand, the bridged carbonyl species was significantly enhanced by the

presence of potassium. The Rh/TiO2 films to which potassium was added

catalyzed the production of significant amounts of acetone and acetaldehyde

as oxygenated products. It is likely that the bridged carbonyl species is

the precursor to oxygenated products. or,
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Introduction

There aas been considerable interest in the effects of alklai metal

promotors in catalytic reactions. 1 Solymosi and coworkers have suggested

that the additives electronically affect metal-support interaction and thus

influence catalytic activity. Although generally hydrogenation of carbon

monoxide and especially carbon dioxide over supported rhodium catalysts

produces methane as the primary product, 3 the selectivity at least for CO

hydrogenation can be altered toward enhanced yields of oxygenated products

by using alkali promotors. 4 Goodwin and coworkers have shown recently that

added potassium causes the selectivity for CO hydrogenation of a 3% Rh/TiO 2

catalyst to shift toward oxygenated products with acetaldehyde and acetone

being present in significant quantities. 5 It is the purpose of this letter

* to report preliminary data from these laboratories concerning the

hydrogenation of CO over Rh/AI 20 3 and Rh/TiO 2 catalytic films containing

potassium as an additive.

Experimental Section

The Rh/AI20 3 and Rh/TiO 2 catalysts used in this study were prepared in

a manner similar to those studied previously here. 3,6 Briefly,

. acetone/water solutions containing appropriate amounts of RhCI 3 "3H2 0 , KCI,
and 2l

and alumina (Degussa Aluminum Oxide C, 100 m2g- 1) were carefully sprayed

- using a specially designed atomizer onto a heated 20 mm CaF 2 infrared

window. Evaporation of the solvents left a uniform thin film (typically

4.3 mg c- ) of the mixed solid materials adhered to the window. The

window containing the film was mounted inside an infrared cell reactor 3

which was evacuated overnight. The sample film was then evacuated at 470 K

-. for 1 h, reduced at 480 K by 85 Torr doses of hydrogen for 5, 5, 10, and 20

min periods (each period followed by evacuation to ca. 10-5 Torr), and then

2.



evacuated for an additional hour at 480 K to a base pressure of 10-6 Torr.

For a typical experiment the cell was then exposed to a CO:H 2 mixture (1:4)

at ca. 82.5 Torr total pressure and heated rapidly to some prescribed

temperature. Methane gas and surface intermediate formations during the

reaction were monitored by infrared spectroscopy (Perkin Elmer 983 with

data system);3 product distributions at the end of the experiment were

measured by gas chromatography (Carle 400). Pressure measurements were

made with an MKS Baratron capacitance manometer (+0.01 Torr).

Results and Discussion

The interaction of CO with supported Rh catalysts has been the subject

of quite a few infrared studies. 7 Primarily three surface species have

been generally identified as shown below. Species I, commonly referred to

o0
Rh -RhV- -Rh-Rh-

I II lII

as the "gem dicarbonyl" species, exhibits two sharp infrared bands near

2030 and 2100 cm-I 1 which do not shift in wavenumber with coverage. This

fact in conjunction with the fact that this is the only CO species observed

for catalysts having very low Rh loading (eg. 0.5%) has led some workers to

postulate that species I refers to Rh in a highly dispersed state, possibly

even isolated Rh atoms. However, it is now apparent that the presence of

CO itself may be necessary to cause the highly dispersed state of Rh

necessary to produce species 1.8,9 Work in these laboratories 6 and

elsewhere1 0 has demonstrated that species I contains Rh in the +1 oxidation

state. Species II, the "linear CO" species and species III, the "bridged

carbonyl" species, exhibit infrared bands in the regions 2040-2080 cm- 1 and

S3



1840-1920 cm- I , respectively; these bands do shift to higher frequency as

CO coverage is increased and occur only for catalysts of higher Rh loading

(>1%). Species I and III contain clusters of Rh atoms in the zero

oxidation state. It has been of interest in these laboratories to observe

changes in these surface species upon perturbation of the system. For

example, it has been shown that when CO is hydrogenated at 483 K, species I

and II are lost, and a carbonyl hydride species exhibiting an infrared band

near 2040

Rh

cm1 is formed which seems to be a precursor to the production of

methane.6d Solymosi and coworkers first identified this species, 1 1 and we

have proved its existence using isotopic labeling.
6 f

Figure 1 shows the result of reaction of H2 and CO over a 2.2%
Rh/AI203 catalyst film as a function of temperature. It is apparent that

species I completely disappears between 390 and 430 K before the 1304 and

3015 cm-I1 bands for methane gas are observed. At 480 K the identifiable

surface species present during the production of methane are the carbonyl

hydride species (2047 cm- I) and bridged species III. Figure 2 shows the

effects of potassium as an additive. Species I disappears at lower

temperature, the carbonyl hydride species appears to be present in lower

concentration, the concentration of species III appears to be greatly

enhanced, and the methanation reaction is poisoned. Even at 300 K all

infrared bands except the bridged carbonyl band are decreasetin intensity.

Also the species III band shifts to lower wavenumber as the temperature is

increased even though it does not decline in intensity. We have observed



that for a 0.5% Rh/A1203 film, for which only species I is observed, that

at a CO background pressure of 1 x 103- Torr with no hydrogen present the

gem dicarbonyl infrared bands disappear between 430 and 460 K without

potassium present, but between 380 and 430 K when potassium is present. Of

course, without H 2 present no carbonyl hydride infrared band is observed in

this case. The fact that species I is lost at lower temperature when

potassium is present probably indicates that an electronic effect is

operable causing an enhanced dissociation of CO in this species. On the

other hand, the enhanced concentration of species III in the presence of

4..o potassium probably is due to a steric effect, ie. potassium blocks linear

species II sites forcing CO to adopt multiple Rh sites, and hence leads to

an increase in intensity of the species III infrared band. Insignificant

amounts of oxygenated poducts were detected for H2/CO over potassium-doped

Rh/AI203 as expected; selectivity for oxygenated products in this reaction

is favored by higher basicity in the support material than that exhibited

by Al203.4

Figure 3 shows a comparison of CO hydrogenation over a 2.2% Rh/TiO 2

film with and without the presence of potassium. The results are similar

to the Rh/AI203 experiments in that potassium causes a decline in intensity

of all infrared bands except the broad species III band. Clearly the

methanation reaction is poisoned, but oxygenated products are now observed.

In spectrum 3d the bands at 1743, 1350, and 1220 cm which disappear upon

evacuation are due to acetone. Gas chromatographic analyses of the

products produced in the infrared cell showed acetone (12.2%) and

acetaldehyde (10.8%) as primary oxygenated products; both of these products

were produced in higher yield when potassium was present (other products

were methane 42.8%, ethane 8.6%, and carbon dioxide 25.7%). Goodwin and

5W



coworkers5 have also observed these products for CO hydrogenation over

potassium-doped Rh/TiO2, (K:Rh=1:2), although they found slightly more

acetaldehyde (12.4%) than acetone (10.4%); their reaction conditions (1-10

atm, 523-708 K, CO:H 2 = 2:1) were quite different from those employed in

this study, but the results of the two studies are very similar. It is

generally believed that oxygenated products in the CO hydrogenation

reaction result from reaction of undissociated CO with hydrocarbon

fragments. 5 Since the presence of potassium enhances the formation of the

bridged carbonyl species at the expense of the other CO species, it is

probable that the bridged species is the precursor to the oxygenated

products. The gem dicarbonyl and linear CO species most likely dissociate

at low temperature to form carbon, and the carbonyl hydride species when

hydrogen is present. At slightly higher temperature the active carbon is

hydrogenated to methane and higher hydrocarbons. The hydride moiety also

enhances the dissociation of the CO moiety in the carbonyl hydride species

leading to further production of hydrocarbons.

The potassium probably functions in several roles. It enhances CO

dissociation through an electronic effect which should lead to an increased

production of methane and higher hydrocarbons unless inactive carbon is

produced. It sterically blocks active methanation sites and causes the

formation of an increased amount of bridged carbonyl species which is most

probably the precursor to oxygenated products. Finally, there is

increasing evidence that potassium may form cluster complexes with CO or

exhibit short or long-range interactions with CO on transition metals; 12 - 17

this could also lead to ultimate dissociation to inactive carbon and to

steric blockage of active Rh sites. Further work is in progress regarding



CO and CO2 hydrogenation kinetics over potassium-doped supported rhodium

catalysts.
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Figure Captions
.

Figure 1. Infrared spectra for the interaction of H2 and CO over a 2.2%

,Rh/A203 film (4.3 mg cm-2) at a total pressure of 82.5 Torr as a function

of temperature.

Figure 2. Infrared spectra for the interaction of H2 and CO over a 2.2%

Rh/A203 film (4.3 mg cm- 2) to which potassium has been added at a total

pressure of 82.5 Torr as a function of temperature.

Figure 3. Infrared spectra for the interaction of H2 and CO over 2.2%
.2

Rh/TiO films (4.3 mg cm- ) with or without potassium added as indicated;

total pressure was 82.5 Torr.
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